Chemical disarming of isoniazid resistance in Mycobacterium tuberculosis

  05 July 2019

Mycobacterium tuberculosis (Mtb) causes the disease tuberculosis (TB), which kills more people than any other infection. The emergence of drug-resistant Mtb strains has exacerbated this already alarming epidemic. The authors have identified a small molecule, C10, that potentiates the activity of the frontline antibiotic isoniazid (INH) and prevents the selection for INH-resistant mutants. They find that C10 can even reverse INH resistance in Mtb. Therefore, our study reveals vulnerabilities that can be exploited to reverse INH resistance in Mtb.

Further reading: PNAS
Author(s): Kelly Flentie, Gregory A. Harrison, Hasan Tükenmez, Jonathan Livny, James A. D. Good, Souvik Sarkar, Dennis X. Zhu, Rachel L. Kinsella, Leslie A. Weiss, Samantha D. Solomon, Miranda E. Schene, Mette R. Hansen, Andrew G. Cairns, Martina Kulén, Torbjörn Wixe, Anders E. G. Lindgren, Erik Chorell, Christoffer Bengtsson, K. Syam Krishnan, Scott J. Hultgren, Christer Larsson, Fredrik Almqvist, and Christina L. Stallings
Healthy Patients   Smart Innovations  
Back

OUR UNDERWRITERS

Unrestricted financial support by:

Antimicrobial Resistance Fighter Coalition

Bangalore Bioinnovation Centre

INTERNATIONAL FEDERATION PHARMACEUTICAL MANUFACTURERS & ASSOCIATIONS

BD





AMR NEWS

Your Biweekly Source for Global AMR Insights!

Stay informed with the essential newsletter that brings together all the latest One Health news on antimicrobial resistance. Delivered straight to your inbox every two weeks, AMR NEWS provides a curated selection of international insights, key publications, and the latest updates in the fight against AMR.

Don’t miss out on staying ahead in the global AMR movement—subscribe now!

Subscribe

What is going on with AMR?
Stay tuned with remarkable global AMR news and developments!

Keep me informed